Unimodular ε-Hermitian Forms Revisited

EVA BAYER–FLUCKIGER*

Department of Mathematics,
Université de Genève, 2–4, rue du Liévre, 1211 Geneva 24, Switzerland

Communicated by A. Fröhlich

Received September 7, 1982

Let K be an algebraic number field with a nontrivial involution, and let S be a Dedekind set of primes of K (cf. [9, Sect. 21]) which is invariant under this involution. Let A be the set of S-integers of K. We shall study the classification, up to isometry, of unimodular ε-hermitian forms (where $\varepsilon = \pm 1$) on projective A-modules of finite rank. This problem has been considered in [1] in the special case where A is the ring of integers of K (i.e., S contains every finite prime of K). However, the more general situation naturally arises in knot theoretical problems (see, e.g., Levine [8]).

In the present note we shall see that not only the results of [1] generalize to S-integers, but in fact the case where some finite prime of K does not belong to S is much simpler. Every form of rank greater than two behaves like an indefinite form (even if all the signatures are maximal) and a complete set of invariants is given by rank, signatures, terminant (which is a rank one form), and, in the skew-hermitian case, a finite set of pfaffians. The proof of this uses a generalization, due to Kneser, of the strong approximation theorem of G. Shimura, and also some results of Wall.

Let F be the fixed field of the involution, and let S_0 be the set of primes p of F such that $p = P \cap F$ for some P in S. Assume that S_0 contains almost all finite primes of F. Let Ω_0 denote the set of all primes, finite and infinite, of F. Let us denote F_p the completion of F at p, B_p the ring of integers of F_p, $K_p = K \otimes_F F_p$ and $A_p = AB_p$.

Let (V, h) be a nonsingular hermitian or skew-hermitian form. We shall say that S_0 (or S) is an indefinite set of primes for (V, h) if there exists at least one prime p in $\Omega_0 \setminus S_0$ such that $(V, h)_p = (V, h) \otimes_K K_p$ is isotropic (i.e.,

* Supported by the “Fonds National Suisse de la recherche scientifique.”
there exists a nonzero \(x \) in \(V_p \) such that \(h(x, x) = 0 \). A lattice \(L \) in \((V, h) \) is a finitely generated projective \(A \)-module such that \(L \otimes_A K = V \) and that the restriction of \(h \) to \(L \) takes values in \(A \).

The following is a consequence of a result of Kneser (cf. [5, Satz 2; 6]).

Theorem 1. Let \((V, h) \) be a nonsingular hermitian or skew-hermitian form. Assume that \(\dim(V) > 1 \) and that \(S \) is an indefinite set of primes for \((V, h) \). Then an \(SU \)-genus of \(A \)-lattices consists of only one \(SU \)-class.

This generalizes Shimura’s theorem [10, 5.19]. One can also use Shimura’s proof, but instead of applying Eichler’s theorem [2, Satz 5] one has to apply a generalization of this theorem (cf. [11, Proposition 5.8]).

Let \((L, h) \) be a lattice. The determinant of \((L, h) \) is the rank one form \(\det(L, h) : A^n L \times A^n L \to A \), \(\det(L, h)(x_1 \wedge \cdots \wedge x_n, y_1 \wedge \cdots \wedge y_n) = \det(h(x_i, y_j)) \), where \(n = \text{rank}_A(L) \).

We shall say that \((L, h) \) is unimodular if the adjoint of \(h \), \(\text{ad}(h) : L \to \text{Hom}_A(L, A) \), given by \(\text{ad}(h)(x)(y) = h(y, x) \), is bijective.

Assume that there exists \(\alpha \in A \) such that \(\alpha + \bar{\alpha} = 1 \) (this hypothesis is satisfied in the knot theoretical applications). This implies that no dyadic prime of \(F \) ramifies in \(K \) (cf. [1, Remark 3.13]).

Let \((L, h) \) be a unimodular, skew-hermitian lattice of even rank and let \(p \) be a prime of \(F \) which ramifies in \(K \), \(P^2 = pA \). Then the involution on \(A/P \) is trivial (cf. [4, Sect. 5]). The skew-hermitian form \(h \) induces a nonsingular skew-symmetric form \(\bar{h} \) on \(L - L/PL \). Let us denote \(Pf_p(L, h) \) a pfaffian of this form. If \((M, h) \) is another lattice, and if \(\varphi : L \to M \) is an isometry, then \(Pf_p(M, h) = Pf_p(L, h) \).

The unimodular lattices for which \(S \) is an indefinite set of primes are classified by rank, signatures, determinant, and pfaffians.

Theorem 2. Assume that \(S \) is an indefinite set of primes for the unimodular, \(\varepsilon \)-hermitian lattices \(L \) and \(M \). Then \(L \) and \(M \) are isometric if and only if one of the following holds:

(a) \(\varepsilon = +1 \), \(L \), and \(M \) have same rank, signatures, and isometric determinants.

(b) \(\varepsilon = -1 \), \(L \), and \(M \) have same rank, signatures, and there exists an isometry \(f \) between \(\det(L) \) and \(\det(M) \) such that \(\det(f) \ Pf_p(L) \equiv Pf_p(M) \mod P \) for all primes \(p \) of \(F \) such that \(pA \equiv P^2 \).

This is a generalization of [1, Corollary 4.10].
Remark 1. If S does not contain all finite primes of K and if $\dim V > 2$ (where $V = L \otimes_A K$), then the hypothesis of the theorem is always satisfied. Indeed, $(V, h)_p$ is isotropic when p is a finite prime and $\dim V > 2$. Moreover, if p is split (i.e., $pA = P\overline{P}$, where $P \neq \overline{P}$), then $(V, h)_p$ is isotropic also for $\dim(V) = 2$ (notice that $K_p = F_p \times F_p$ if p is split). Therefore the theorem holds in all dimensions provided $\Omega_0 \setminus S_0$ contains a split finite prime.

The following lemma can be deduced from Wall's results (cf. [12]).

Lemma. Let $x \in A_p$, $x\bar{x} = 1$. Then there exists a $\psi \in U(V, h)_p$ such that $\det \psi = x$, $\psi(L_p) = L_p$, if and only if either $\varepsilon = 1$, or $\varepsilon = -1$, and $x \equiv 1 \mod P$, where $pA = P^2$.

Sketch of Proof. If $\varepsilon = 1$ or $\varepsilon = -1$ and p is unramified, it is easy to obtain the lemma from the classification of unimodular forms over A_p (cf. [10, 4.18; 12, pp. 431-433]). Let us assume that $\varepsilon = -1$ and that p is ramified. Then $(L, h)_p$ is hyperbolic (cf. [12, p. 234; 4, Proposition 8.1.1]). Set $\tilde{L} = L/PL$. Then \tilde{L} supports a nonsingular skew-symmetric form \tilde{h}. Let $\psi \in U(V, h)_p$ such that $\psi(L_p) = L_p$. Then ψ induces an automorphism of (\tilde{L}, \tilde{h}), the determinant of which must be $+1$, therefore $x = \det(\psi) \equiv 1 \mod P$. Conversely, if $x \equiv 1 \mod P$, then $x = y^2$ with $y \in A_p$ by Hensel's lemma (p is nondyadic) and $y \equiv \pm 1 \mod P$. This, together with $x\bar{x} = 1$ implies $y\bar{y} = 1$. Let $e, f \in L$ be the basis of a hyperbolic plane $H \subset L$. Let us define $\psi(e) = ye, \psi(f) = yf$, and let ψ be the identity on the orthogonal complement of H. Then $\psi \in U(V, h)_p$, $\psi(L_p) = L_p$ and $\det(\psi) = x$.

Proof of Theorem 2. The conditions of the theorem are clearly necessary. Let us prove that they are also sufficient. By Landherr's theorem (cf. [7]) we can assume that L and M are both lattices in (V, h). By [12, Proposition 6] this implies that L and M are in the same genus. We shall now use a similar argument to Shimura's proof of [10, Proposition 5.27]. Let $f: \det(L) \to \det(M)$ be an isometry and let $a = \det(f)$. Then $aa = 1$. There exists an element ψ of $U(V, h)$ such that $\det \psi = a$.

Let $N = \psi(L)$. For every prime p of F there exists an element ϕ_p of $U(V, h)_p$ such that $\phi_p(M_p) = N_p$. On the other hand the existence of f implies that we have an element F of $GL(V)$ such that $F(L) = M$ and $\det(F) = a$. This implies that $\det(\phi_p)$ is a unit for all p. We also have $P_f(N) = P_{\phi_p}(M)$ if p is ramified, therefore $\det(\phi_p) = 1 \mod P$, where $P^2 = pA$. By the lemma this implies that there exists an element ϕ of $U(V, h)$ such that $\phi_p(M_p) = M_p$ and that $\det(\phi_p) = \det(\phi)^{-1}$. Therefore N and M are in the same SU-genus, so they are SU-equivalent by Theorem 1.

Remark 2. It is easy to check that the other results of [1, Section 4] can also be generalized to the case of S-integers. So we have class number formulas (Proposition 4.8, of course one has to replace C_k by the group of
classes of A-ideals), decomposition theorems into lattices of rank at most 2 if $\varepsilon = \pm 1$ (Proposition 4.11) and at most 4 if $\varepsilon = -1$ (Proposition 4.12) and cancellation (Proposition 4.13).

Notice that L. Gerstein's decomposition theorem, for non necessarily unimodular lattices, also generalizes to S-integers: if S does not contain all finite primes of K, then every hermitian A-lattice is isometric to the orthogonal sum of lattices of rank at most 4. The proof is as in [3, Theorem 3.14], except that one has to apply Theorem 1 instead of Shimura's theorem.

References